Article Image
IPFS News Link • Science, Medicine and Technology

Going Beyond Regular Limits of Optical Imaging By Using Quantum Information

• arclein
information for 2 photon absorption. Insets (A) and (D) are the highest resolution images using classical information (k = 1, q = 4) for a mean photon count of = 500 (A) and = 5 million (D). Insets (B) and (E) combine both classical and quantum image orders (k = 1,2,3) also for mean photon counts of = 500 (B) and = 5 million(E). Inset (C) and (F) show the radial average ofthe Fourier transform of the reconstructions compared to the actual image used in the simulation for mean photon count levels = 500 (C) and = 5 million (F). Scale bar is 5?. A revolution is under way in optical microscopy where the quantum properties of light are exploited to extract additional information from quantum correlations that are absent in the classical interpretation. Such quantum information brings new possibilities but also its own set of limitations. Here, we develop a broader computational imaging approach to fuse quantum and classical information to provide a general solution that jointly exploits

Agorist Hosting