Article Image

IPFS News Link • Science, Medicine and Technology

Cannabis Can Be 30x More Powerful Than Aspirin for Inflammation, Says New Study..

• https://www.goodnewsnetwork.org

Medical marijuana is quickly being recognized as a viable alternative for pain relief—and now for the first time ever, researchers have uncovered exactly how the cannabis plant creates important pain-relieving molecules that are 30 times more powerful at reducing inflammation than Aspirin.

The discovery, which was made by researchers from the University of Guelph, unlocks the potential to create a naturally derived pain treatment that would offer potent relief without the risk of addiction of other painkillers.

"There's clearly a need to develop alternatives for relief of acute and chronic pain that go beyond opioids," said Professor Tariq Akhtar, Department of Molecular and Cellular Biology, who worked on the study with MCB professor Steven Rothstein. "These molecules are non-psychoactive and they target the inflammation at the source, making them ideal painkillers."

Using a combination of biochemistry and genomics, the researchers were able to determine how cannabis makes two important molecules called cannflavin A and cannflavin B.

Known as "flavonoids," cannflavins A and B were first identified in 1985, when research verified they provide anti-inflammatory benefits that were nearly 30 times more effective gram-for-gram than acetylsalicylic acid (sold as Aspirin).

However, further investigation into the molecules stalled for decades in part because research on cannabis was highly regulated. With cannabis now legal in Canada and genomics research greatly advanced, Akhtar and Rothstein decided to analyze cannabis in order to understand how Cannabis sativa biosynthesizes cannflavins.

"Our objective was to better understand how these molecules are made, which is a relatively straightforward exercise these days," said Akhtar. "There are many sequenced genomes that are publicly available, including the genome of Cannabis sativa, which can be mined for information. If you know what you're looking for, one can bring genes to life, so to speak, and piece together how molecules like cannflavins A and B are assembled."


Agorist Hosting