Article Image

IPFS News Link • Science

World's first plasmonic nanostructure recording could produce storage breakthrough

• http://www.gizmag.com

Arrays of gold, pillar-supported bowtie nanoantennas have been used to record audio inform...

Arrays of gold, pillar-supported bowtie nanoantennas have been used to record audio information at the nanoscale (Image: University of Illinois)

The use of optical sound-on-film recording on early movie films revolutionized the motion picture industry and remained the standard method of audio recording in that medium for more than 80 years. Now researchers from the University of Illinois have emulated that feat in miniature by claiming to have recorded the world's first optically encoded audio onto a plasmonic film substrate. The size of human hair, this substrate has a capacity over five-and-a-half thousand times greater than conventional analog magnetic recording media.

Requiring an area of just 0.0255?sq mm (0.000039 sq in) on the plasmonic film for one second of audio storage, compared to an area of 1,143 sq mm (1.77 sq in) needed for analog magnetic tape to capture the same length of recording, the storage capacity potential is very high, particularly as the storage medium itself is so incredibly thin.

In essence, researchers working under the leadership of associate professor Kimani Toussaint recorded this optically encoded audio onto nanoantennas in a nonmagnetic plasmonic nanostructure by utilizing the ability of these pillar-supported, bowtie, gold nanoantennas (pBNAs) to emulate photographic film.

In other words, by altering the reflective properties of nanoantennas to recreate certain optically-encoded frequency responses when illuminated, the team successfully recorded from middle C through (C4), D, E, F, G, A, B and on to tenor C (C5), thereby creating a plasmonic tuned keyboard or "nano piano", as the team has dubbed it.

To do this, the team recorded sound signals using an audio-modulated tunable Titanium-Sapphire laser to focus a beam through a microscope to scan directly onto the pBNAs. To play back the recording – in this case, Twinkle, Twinkle, Little Star – the same microscope was used to transfer the recorded information to a digital camera, where signal processing was used to turn the optical patterns back into sound.

"Data storage is one interesting area to think about," said Professor Toussaint. "For example, one can consider applying this type of nanotechnology to enhancing the niche, but still important, analog technology used in the area of archival storage such as using microfiche. In addition, our work holds potential for on-chip, plasmonic-based information processing."

Previously having shown in other research that pBNAs are more prone to changes in heat to their structure than standard bowtie nanoantennas when subjected to low-powered laser light, the team used this technique to slightly melt the gold in each nanoantenna to "tune" them to a specific frequency response and, therefore, a different musical note.

"A characteristic property of plasmonics is the spectrum," said Hao Chen, a former postdoc in Toussaint's laboratory. "Originating from a plasmon-induced thermal effect, well-controlled nanoscale morphological changes allow as much as a 100-nm spectral shift from the nanoantennas. By employing this spectral degree-of-freedom as an amplitude coordinate, the storage capacity can be improved."

The plasmonic film employed in this research can also be made to usefully record digital data too, if necessary, dependent upon the way the structure is configured using the laser-light manipulation.

www.BlackMarketFridays.com